The ocean float lab in the UW Ocean Sciences Building is a hive of activity. Dozens of floats are in various stages of construction, both for the ongoing Argo program and the new SOCCOM project to study the Southern Ocean
Dennis Wise/University of Washington
The ocean float lab in the UW Ocean Sciences Building is a hive of activity. Dozens of floats are in various stages of construction, both for the ongoing Argo program and the new SOCCOM project to study the Southern Ocean.

The University of Washington is among leading U.S. oceanographic institutions that have received National Science Foundation funding to build and deploy 500 robotic ocean-monitoring floats to monitor the chemistry and biology of the world’s oceans.

The National Science Foundation on October 29 approved a $53 million, five-year grant to the Monterey Bay Aquarium Research Institute (MBARI); the UW; Scripps Institution of Oceanography; the Woods Hole Oceanographic Institution; and Princeton University. The consortium will build robotic ocean-monitoring floats to be distributed in oceans around the globe.

“This will be one of the largest awards that NSF has ever given in ocean sciences,” said Stephen Riser, a UW professor in the School of Oceanography. “It will allow us to create and deploy an ocean observing system that will operate for decades and will influence our ideas about the carbon cycle, in the same way that the basic Argo program has helped our understanding of the physics of ocean circulation.”

About $20.5 million of the award will go to the UW to build and deploy about 300 of the 500 floats, with another $3 million for maintenance. The UW team plans to begin construction in 2021 and hopes to put the first instruments in the water later that year.

The new instruments are similar to roughly 200 the UW team previously built to survey the Southern Ocean around Antarctica, though these won’t have under-ice capabilities.

“These observations will provide an unprecedented global view of ocean processes that determine carbon cycling, ocean acidification, deoxygenation and biological productivity — all of which have a critical impact on marine ecosystems and the climate of our planet,” said Alison Gray, a UW assistant professor of oceanography.

These data will allow scientists to pursue fundamental questions about ocean ecosystems, observe ecosystem health and productivity, and monitor the elemental cycles of carbon, oxygen, and nitrogen in the ocean through all seasons of the year. Such essential data are needed to improve computer models of ocean fisheries and climate, and to monitor and forecast the effects of ocean warming and ocean acidification on sea life.

Read more at UW News »