Researchers collect rock samples in Greenland
Nicolás Young/Columbia University
Co-authors Jessica Badgeley (standing) and Alia Lesnek from the University at Buffalo collect rock samples in Greenland in August 2017. The study used beryllium isotopes in the rocks to get dates for the glacier’s edge in southwestern Greenland at different times in order to compare their age and location to the modeled changes in the size of the Greenland Ice Sheet.

If human societies don’t sharply curb emissions of greenhouse gases, Greenland’s rate of ice loss this century is likely to greatly outpace that of any century over the past 12,000 years, a new study concludes.

University of Washington scientists are among the authors of the study published Sept. 30 in the journal Nature. The research employed ice sheet modeling to understand the past, present and future of the Greenland Ice Sheet.

Scientists used new, detailed reconstructions of ancient climate to drive the model, and validated the model against real-world measurements of the ice sheet’s contemporary and ancient size.

The findings place the ice sheet’s modern decline in historical context, highlighting just how extreme and unusual projected losses for the 21st century could be.

“This study shows that even with uncertainties accounted for, current ice loss from Greenland is about as high as it has ever been in thousands of years, and the ice loss is increasing,” said co-author Eric Steig, a UW professor of Earth and space sciences. “We will enter a unique time within this century, if we have not already done so, for Greenland ice loss at any time in the past 12,000 years.”

Though the project focused on southwestern Greenland, research shows that changes in the rates of ice loss there tend to correspond tightly with changes across the entire ice sheet.

“We relied on the same ice sheet model to simulate the past, the present and the future,” says co-author Jessica Badgeley, a UW doctoral student in Earth and space sciences. “Thus, our comparisons of the ice sheet mass change through these time periods are internally consistent, which makes for a robust comparison between past and projected ice sheet changes.”

Read more at UW News »